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Abstract

The development of Functionally Graded Materials (FGMs) for energy-absorbing applications requires
understanding of stress wave propagation in these structures in order to optimize their resistance to failure. A

simple, one-dimensional model is proposed to develop insight into stress wave management issues. This model is
initially applied to FGMs with discrete layering, then extended to continuously graded architectures. From this
model, it is determined that the peak stress of waves re¯ected from the FGM interface is slightly greater than for

materials with sharp interfaces. The bene®t of the FGM over the sharp interface is to introduce a time delay to the
re¯ected wave propagation when stresses approach peak levels. This time delay is highly dependent on the
composition gradient and the di�erences in base material properties, consequently the optimal choice of FGM

architecture will depend signi®cantly on the critical design conditions for speci®c applications. Time-history pro®les
of re¯ected stress waves are presented for two speci®c cases of interest in armor applications: (1) porous FGMs, and
(2) Alumina±Aluminum FGMs. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There is a great deal of interest in developing Functionally Graded Materials (FGMs) for joining

dissimilar materials in energy absorbing applications, such as armor plating. The advantage of using

FGMs is their superior resistance to interfacial failure. In addition, it has been postulated that the

graded interface will attenuate stress wave propagation. The e�ect of graded interfaces on stress wave
propagation has not yet been investigated.

FGMs have been manufactured using a variety of techniques, such as thermal spray processing,

powder processing, and in®ltration casting (see e.g. Mortenson and Suresh, 1994). Previous design
studies on FGMs have focused on examining the e�ects of gradient architecture on thermal residual

stresses and fracture (see e.g. Williamson et al., 1993; Williamson and Rabin, 1996; Finot and Suresh,
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1996). For example, Williamson and Rabin (1996) have concluded that designing the interface of a
cylindrical FGM with as few as four discrete layers with a composition gradient of �x=d �3, where x is
the distance from the ®rst base material and d is the thickness of the interface, can minimize thermal
residual stresses. While this architecture may be suitable for addressing fabrication issues, it is still
necessary to determine architectural features that are desirable to manage stress wave propagation.
Kuwahara et al. (1992) have proposed an NDE technique using Howard's inverse scattering method to
characterize the acoustic impedance pro®le of FGMs. However, this technique only analyzes the e�ects
of the graded interface on the frequency response of the stress waves, not their propagation behavior.

In this paper, a simple one-dimensional (1D) model is presented for analyzing stress wave propagation
in FGMs. Gradient architectures are examined to determine optimal characteristics for the design of
FGMs to manage stress waves. Design examples are also presented for two cases of interest in armor
applications: (1) a porous FGM, and (2) an Alumina±Aluminum FGM.

2. Theoretical model

In designing FGMs for energy absorbing applications, it is necessary to understand the types of
loading to which the system will be subjected. For impact events, many di�erent types of stress waves
(e.g., Rayleigh, dilitational) are initially generated and propagate in a 3D manner (see e.g. Wilkins et al.,
1970). Of these waves, the compressive dilitational waves usually contain most of the energy generated
by the impact and are fairly focused ahead of the impact zone. During propagation through an energy
absorbing system containing dissimilar materials, where the impacted material is typically harder than
the backing material, the compressive wave will be re¯ected as a tensile wave at an interface. In many
applications, these tensile waves start compromising the structural integrity of the system components,
leading to localized system failure. Therefore, in designing interfaces for these systems it is desirable to
attenuate the re¯ection of stress waves to delay the failure of individual components, thereby de-
localizing system failure. In order to analyze the impact behavior of FGMs, stress waves will be
modeled as linearly elastic, longitudinal waves propagating in one dimension.

The next issue to be addressed is the modeling of the gradient architecture formed from base
materials 1 and 2, designated by V = 0 and V = 1, respectively in Fig. 1. Previous studies have
typically treated the graded interlayer as a system of discrete layers that can be in®nitely re®ned to a

Fig. 1. Gradient architecture of FGMs.
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continuous gradient (Markworth et al., 1995). These layers are usually identical in size, but follow a
power-law variation in composition as follows,

V �
�
x

d

�n

�1�

where V is the volume fraction of base material 2 and n is an exponent that can be arbitrarily varied.

3. One-dimensional stress wave propagation in discretely layered FGMs

Using the aforementioned assumptions, stress wave propagation in discretely layered FGMs can now
be visualized in Fig. 2. If the graded interface consists of m discretely graded layers between base
materials 1 and 2, then the propagating stress wave will encounter m� 1 sharp interfaces. At each sharp
interface, the stress wave will be partially re¯ected and transmitted. For 1D wave propagation, the
amount of re¯ection and transmission from a sharp interface can be determined as follows (see e.g.
Meyers (1994)):

f � 2fi
�1� a� �2a�

fr � fi
�1ÿ a�
�1� a� �2b�

where fi is the amount of stress in the incident wave, ft is the amount of stress in the transmitted wave,
fr is the amount of stress in the re¯ected wave, and a is the ratio of the acoustic impedance of base
material 1 to the acoustic impedance of base material 2. The thickness of each layer is d

m , and the total
time, t, it takes for the incident wave to travel through a layer and then get re¯ected back is:

t � 2d

cm
�3�

where c is the longitudinal wave speed of the layer.

Fig. 2. One-dimensional stress wave propagation through discretely layered FGM (note the waves re¯ected from multiple inter-

faces, designated by dashed arrows).
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A time-history pro®le of the stress wave re¯ected into base material 1 by the graded interface can now
be constructed by summing the waves re¯ected from each discrete layer and the time it takes for that
wave to be generated and reach base material 1. Assuming that the period of the stress wavelength, l, is
much longer than the thickness of the graded interface (i.e., l� d), the normalized magnitude of the
re¯ected wave in base material 1 will be,

f 1
r

fi
� 1ÿ a0

1� a0
�
Xm
j�1

"ÿ
1ÿ aj

�ÿ
1� aj

�Yj
k�1

4akÿ1
�1� akÿ1 � 2

#
� HOTs �4�

where f 1
r is the amount of stress in the wave re¯ected into base material 1, aj is the ratio of acoustic

impedance of layer j� 1 to j, and HOTs are higher order terms comprised of three or more re¯ections
and one or more transmissions. Note that layer 0 and layer m� 1 are base materials 1 and 2
respectively, and each intermediate layer is a composite of the two base materials whose exact
composition is determined using Eq. (1). The normalized time it takes for the wave re¯ected from the
jth layer to reach base material 1, �t, is given by,

�t � t1

�d=c0 � �
2

m

Xf
k�1

c0
ck

�5�

where t1 is the time it takes to reach base material 1, c0 is the wave speed in base material 1, and ck is
the wave speed in layer k.

The HOTs in Eq. (4) have the following form,

� ÿ 1� p
� �1ÿ a�
�1� a�

�2p�1�
4a

�1� a�2
� q

� � ÿ 1� pRT pr1, qr1 �6�

where ÿ1 < R < 1 represents the product resulting from each re¯ection that the propagating stress wave
experiences at a sharp interface between layers in the graded interface, as indicated in the left-hand side
of Eq. (6), and 0 < T < 1 represents the product resulting from each transmission. Since T40 as
R41, ÿ 1 and R40 as T41, the contribution of each HOT gets progressively smaller as p and q
increase. Consequently, the largest individual contribution comes when p � q � 1:

Considering the case where the graded interlayer is comprised of a single layer. Let a > 1 on the ®rst
interface of the interlayer and the second interface has an a� 1: The magnitude of the ®rst HOT term
can then be compared with the magnitude of the ®rst two terms in Eq. (4). From this comparison, it can
be seen that the contribution of the ®rst HOT is greatest when a � 4, where the magnitude of the HOT
will be 31% of the ®rst two terms that result from waves re¯ected from the front and back interfaces of
the layer. For p > 1, the corresponding HOT will be �ÿ0:6� pÿ1 of the ®rst HOT, which will help to
reduce the contribution of all HOTs to 19%. Similar contributions are also obtained if the ®rst interface
has a < 1 and the second interface has a� 1: While it appears that the contributions from HOT can
not always be neglected, it is simpler to extend the analysis to a continuously graded interface by
neglecting all of the HOTs.

4. Stress wave propagation in continuously graded FGMs

In order to analyze the e�ects of the gradient architecture on stress wave propagation in continuous
FGMs, assume that the normalized physical properties of each layer can be described using a linear
rule-of-mixtures (ROM) formula as follows:
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pj
p0
� 1� � �pÿ 1�Vj �7�

where p0 is the property of base material 1, �p is the ratio of the property for base material 2 to the
property for base material 1, and pj is the property of the jth layer. Also, assume that the acoustic
impedance obeys the linear ROM formulation.

By in®nitely re®ning the discrete analysis used to develop Eqs. (4) and (5), an analytic expression can
be derived for the behavior for a continuously graded interface as follows for an arbitrary n, as follows:

fr
fi
� 1

2

�x=d
0

� �kÿ 1�ntnÿ1�1� � �kÿ 1�tn�ÿ1 dt � 1

2
ln

 
1� � �kÿ 1�

�
x

d

�n
!

�8a�

tc0
d
� 2

� x
d

0

�1� � �kÿ 1�tn�ÿ1 dt �8b�

where x
dR1, and �k is the acoustic impedance of base material 2 normalized by the acoustic impedance of

base material 1. From these equations, it can be seen that the peak re¯ected stress will be independent
of n and is equal to ln� �k�:

As n40 and n41, the gradient architecture will approach the case of a sharp interface. In both of
these cases, the peak magnitude predicted by Eq. (8a) should be identical to the magnitude of a wave
re¯ected from sharp interface. However, the peak magnitude of the stress wave, which occurs at x � d,
actually exceeds that of a sharp interface by a factor of �1� �k�

2�1ÿ �k� ln� �k�: This discrepancy is a direct result of
neglecting the contribution of HOTs in the analysis. Di�erences in the magnitude of the peak stress will
be negligible as �k41, however they will approach in®nity as �k40 and �k41:
While Eq. (8a) appears to be inadequate for predicting the magnitude of stress waves re¯ected from

sharp interfaces as �k40 and �k41, it can be seen that for cases where � �kÿ 1��xd �n � 1, Eq. (8a) can be
approximated as follows,

fr
ft

0
� �kÿ 1�

�
x

d

�n

2
�9�

The right-hand side of Eq. (9) is also approximately equal to�
1ÿ k�x�

k�0�
�

�
1� k�x�

k�0�
� for � �kÿ 1�

�
x

d

�n

� 1

which also produces the correct result for a sharp interface at x � d: It can now be determined
heuristically argued that the following equation will more accurately predict the magnitude of the
re¯ected stress waves,

fr
fi

0

�
1ÿ k�x�

k�0�
�

�
1� k�x�

k�0�
� �10�

Eq. (10) is an analytic expression that may better capture the e�ects of HOTs neglected in the
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development of Eq. (8a). This can be veri®ed by performing a numerical simulation of the stress wave
propagation in FGMs.

5. Numerical simulation of stress wave propagation in discretely layered FGMs

A numerical code was developed for analyzing the propagation of stress waves in discretely layered
FGMs. This code tracks the propagation of re¯ected stress waves in the FGM interlayer. Because the
number of stress waves re¯ected in the interlayer increases very rapidly with time, an Eulerian
description of the stress wave propagation was used in the numerical analysis. This description involved
subdividing each layer of the FGM into `nodal locations' where the direction and magnitude of each
wave was calculated. Discrete time increments were also used to calculate the propagation of the stress
waves. Since the calculated positions may not always correspond to `nodal locations', there will be some
error introduced into the analysis that can be minimized by using small time increments and ®ner
resolution of the `nodal locations'.

As was previously mentioned, the e�ects of HOTs appear to be more signi®cant as �k40 and �k41:
Therefore, a numerical simulation will be performed using �k � 0:01, which from Eq. (8a) corresponds to
a re¯ected stress wave with a peak magnitude that is 2.4 times greater than the re¯ection from a sharp
interface. The time-history for the re¯ected stress waves predicted from the numerical simulation for
various discretely layered architectures can be seen in Fig. 3 for n � 1: From this ®gure, it appears that
as the architecture becomes continuously graded, Eq. (10) is far more accurate in predicting the time-
history of the re¯ected stress wave than Eq. (8a). In fact, the steady-state magnitude of the re¯ected
stress wave is independent of the layering and is identical to the response for a sharp interface.

The e�ects of the composition gradient on the time-history for the re¯ected stress wave can be seen in

Fig. 3. Numerical simulation of discrete layering e�ects on re¯ected wave propagation in a FGM with �k � 0:01 and n � 1:

H.A. Bruck / International Journal of Solids and Structures 37 (2000) 6383±63956388



Fig. 4. This ®gure indicates that the time when stresses approaching peak levels occur in the FGM is
delayed over the sharp interface. Furthermore, the time to these stress levels increases substantially as n
approaches 0. This time delay can result in a greater dynamic energy absorbing capability for the FGM
architecture over a sharp interface architecture by delaying the time it takes to initiate damage. Thus,
even though the peak stress is una�ected by the gradient architecture, there can be a time delay bene®t

Fig. 4. E�ects of composition gradient on time-history of re¯ected stress wave.

Fig. 5. e�ects of gradient architecture on the normalized time delay for the peak re¯ected stress.
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to using an FGM. Using Eq. (10), the e�ect of gradient architecture on the time delay to the peak
re¯ected stress is summarized in Fig. 5. This time delay bene®t only exists for �k < 1, which is not
surprising since for �k > 1 the re¯ected waves will be traveling much faster through the interlayer than
through base material 1. Furthermore, the time delay appears to be optimal when �k40, which
corresponds to a porous FGM. Since this case appears to be of bene®t in optimizing the design of
FGMs for stress wave management, it will be considered in more detail in Section 6.

While Eq. (10) appears to capture the wave propagation trends predicted for discretely layered
FGMs, even for a single layered architecture, the response of a continuously graded FGM still oscillates
around the response predicted from Eq. (10). This `overshoot' behavior occurs near the peak re¯ected
stress, and is similar to the response that would be expected from an underdamped, fourth-order system
feedback control system with a step input equivalent to the wave re¯ected from a sharp interface as
follows (see e.g. Dorf, 1986):

fr
fi
� �1ÿ �k�
�1� �k�

ÿ
1ÿ a1e

ÿa2tsin�a3t� a4� ÿ a5e
ÿa6tsin�a7t� a8�

� �11�

where ai are arbitrary constants. Although there is no physical basis for applying Eq. (11) to the
continuously graded FGM, it provides a more accurate mathematical description for the re¯ected stress
wave than the one provided by Eq. (10). However, the unknown parameters it contains can only be
determined by ®tting the equation to pre-existing numerical results.

A best ®t of Eq. (11) to the results of the numerical simulation for an interface with 512 layers can be
seen in Fig. 6. The magnitude of the `overshoot' appears to increase the larger n gets (Fig. 4), indicating
that the remaining e�ects of HOTs not captured in Eq. (10) appear to increase as the changes in
composition become greater farther away from the base material 1. This `overshoot' behavior can
increase the magnitude of the peak re¯ected stress and slightly reduce the time delay at stress levels near
the peak re¯ected stress. However, since the bene®ts of the time delay to the peak re¯ected stress in
Fig. 5 are most signi®cant for small n, `overshoot' e�ects should be minimal and Eq. (10) should be
su�cient for further analyzing the time delay bene®ts of FGMs.

Fig. 6. Best ®t of solution for an underdamped, fourth-order feedback control system to a numerical simulation of a gradient archi-

tecture with n � 1:
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6. Special FGM cases

6.1. Case I: porous FGMs

As was previously discussed, porous FGMs may be used to optimize the management of stress waves.
Porous materials are already of interest for armor applications because of their superior ballistic mass
e�ciency, which is a relative measure of the mass of a material that is required to resist penetration by a
projectile. The variation of the time-history with n can be seen for a quasi-porous FGM with �k � 10ÿ5

in Fig. 7. An idea of how the choice of the normalized magnitude may a�ect the selection of an optimal
n can be seen in Fig. 8. From this ®gure it can be seen that the desired re¯ected stress must be over
50% of the steady-state level before any signi®cant time delay bene®ts are obtained from the gradient
architecture. Furthermore, as previously stated, time delay bene®ts are only realized for small gradient
exponents, which signi®cantly reduces the impact of `overshoot' and validates the use of Eq. (10).

In reality, it is not possible to manufacture a porous material with a continuous gradient to a porosity
level of 100% because connectivity issues associated with grain size will prevent a highly porous material
from remaining intact. Therefore, a porous FGM will terminate in a free surface at a porosity level less
than 100%. This free surface will re¯ect a stress wave that has a greater peak magnitude than if the free
surface was not present (Fig. 9). This re¯ection will also decrease the time delay bene®t that would have
been achieved had the free surface not been present. The end result could be a peak re¯ected wave
occurring sooner than had a sharp interface been present, which would have a deleterious e�ect on the
energy absorbing capability of the FGM.

`

Fig. 7. Time-history pro®le of re¯ected stress wave for quasi-porous FGM with �k � 10ÿ5:
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6.2. Case II: Alumina±Aluminum FGM

In addition to Porous FGMs, another FGM system that is of interest for armor applications is
Alumina±Aluminum. The physical properties of these materials are given in Table 1. Using the ROM
formulation, normalized wave speeds, �c, and acoustic impedances, �k, for various volume fractions of
Aluminum, V, can be determined (Fig. 10). It can be seen that these properties obey a power law form
that is identical to the ones used in the previous analyses. The time-history behavior for this FGM
system can now be formulated in Fig. 11, and the time delay bene®ts summarized in Fig. 12.

Comparing the time delay bene®ts of Alumina±Aluminum FGMs with quasi-porous FGMs, it is
apparent that the time delay bene®ts are greater for the quasi-porous FGM, which possesses a greater
di�erence in base material properties. This behavior is consistent with the e�orts of the gradient
architecture e�ects on the time to the peak re¯ected stress reported in Fig. 5. In fact, maximum time

Fig. 8. Variation of time to normalized re¯ected stress with gradient exponent at various normalized stress levels for a quasi-porous

FGM with �k � 10ÿ5:

Fig. 9. Wave propagation e�ects for a quasi-porous FGM that is terminated in a free surface at a porosity level of 50%.
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delay bene®ts of only 25% are expected when the stress level is within 93% of the steady-state level for
the re¯ected stress. Thus, using gradient architectures may slightly improve the energy absorbing
capability of Alumina±Aluminum structures, which is in contrast to the e�ect gradient architectures may
have on porous FGMs.

7. Conclusions

A simple, 1D model for stress wave propagation in FGMs has been formulated. Using this model, the
e�ects of gradient architecture on the attenuation of stress waves re¯ected from the interface can be
analyzed for design purposes. The following conclusions can be drawn:

1. Stress wave management bene®ts from using FGMs can be derived using a single layered
architecture.

2. The steady-state magnitude of the re¯ected stress wave is independent of layering and composition
gradient, and is identical to the magnitude of the stress wave re¯ected from a sharp interface.

3. Gradient architectures have larger peak magnitudes for re¯ected stress waves than sharp interfaces,
however the time at which stresses approaching peak levels is delayed resulting in a time delay bene®t
for �k < 1:

4. The time delay bene®ts of using a FGM are greatest when the desired magnitude of the re¯ected
stress wave approaches that for a sharp interface and the gradient exponent approaches 0.

5. Time delay bene®ts will be greater and occur at lower relative stress levels as the di�erences in base

Table 1

Physical properties for Alumina and Aluminum

Property Alumina Aluminum

Young's modulus, E (GPa) 400 70

Density, r (kg/m3) 4000 2700

Wave speed, c (km/s) 10 5

Fig. 10. Variation of normalized wave speeds and acoustic impedances with volume fraction of Aluminum.
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material properties increase.
6. Although time delay bene®ts are greatest with porous FGMs, termination of a porous FGM in a free

surface at a porosity level less than 100% can result in larger peak re¯ected stresses that occur sooner
than if a sharp interface were present.

7. For Alumina±Aluminum FGMs, the time delay bene®ts are so small for stresses approaching steady-
state levels that only slight improvements in their energy absorbing capability may be expected.

From these conclusions, it appears that the optimal architecture for attenuating stress waves in FGMs
will depend greatly upon the design stress for the re¯ected wave.

The proposed theoretical model can be experimentally veri®ed by testing functionally graded
specimens in a split Hopkinson pressure bar. The propagation of the stress wave through the specimen
can be monitored by placing a strain gage on the ®rst base material. It is important to remember that
the signal from the strain gage will be a superposition of strains from the re¯ected and incident stress

Fig. 11. Time-history of re¯ected stress pulse for Alumina±Aluminum FGM with various gradient architectures.

Fig. 12. Variation of time to normalized re¯ected stress with gradient exponent at various normalized stresses levels for Alumina±

Aluminum FGM.
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waves. Therefore, the strain gage should be placed a su�cient distance away from the graded interface
to determine the contribution of the incident stress wave to the strain gage signal.
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